3.2.66 \(\int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx\) [166]

3.2.66.1 Optimal result
3.2.66.2 Mathematica [A] (verified)
3.2.66.3 Rubi [A] (verified)
3.2.66.4 Maple [C] (verified)
3.2.66.5 Fricas [C] (verification not implemented)
3.2.66.6 Sympy [B] (verification not implemented)
3.2.66.7 Maxima [A] (verification not implemented)
3.2.66.8 Giac [A] (verification not implemented)
3.2.66.9 Mupad [B] (verification not implemented)

3.2.66.1 Optimal result

Integrand size = 25, antiderivative size = 176 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=\frac {b \arctan \left (\sqrt {\frac {3}{2}} x^2\right )}{2 \sqrt {6}}-\frac {\left (\sqrt {6} a+2 c\right ) \arctan \left (1-\sqrt [4]{6} x\right )}{4\ 6^{3/4}}+\frac {\left (\sqrt {6} a+2 c\right ) \arctan \left (1+\sqrt [4]{6} x\right )}{4\ 6^{3/4}}-\frac {\left (\sqrt {6} a-2 c\right ) \log \left (\sqrt {6}-6^{3/4} x+3 x^2\right )}{8\ 6^{3/4}}+\frac {\left (\sqrt {6} a-2 c\right ) \log \left (\sqrt {6}+6^{3/4} x+3 x^2\right )}{8\ 6^{3/4}}+\frac {1}{12} d \log \left (2+3 x^4\right ) \]

output
1/12*d*ln(3*x^4+2)+1/12*b*arctan(1/2*x^2*6^(1/2))*6^(1/2)-1/48*ln(-6^(3/4) 
*x+3*x^2+6^(1/2))*(-2*c+a*6^(1/2))*6^(1/4)+1/48*ln(6^(3/4)*x+3*x^2+6^(1/2) 
)*(-2*c+a*6^(1/2))*6^(1/4)+1/24*arctan(-1+6^(1/4)*x)*(2*c+a*6^(1/2))*6^(1/ 
4)+1/24*arctan(1+6^(1/4)*x)*(2*c+a*6^(1/2))*6^(1/4)
 
3.2.66.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.93 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=\frac {1}{48} \left (-2 \sqrt [4]{6} \left (\sqrt {6} a+2 \left (\sqrt [4]{6} b+c\right )\right ) \arctan \left (1-\sqrt [4]{6} x\right )+2 \sqrt [4]{6} \left (\sqrt {6} a-2 \sqrt [4]{6} b+2 c\right ) \arctan \left (1+\sqrt [4]{6} x\right )-\sqrt [4]{6} \left (\sqrt {6} a-2 c\right ) \log \left (2-2 \sqrt [4]{6} x+\sqrt {6} x^2\right )+\sqrt [4]{6} \left (\sqrt {6} a-2 c\right ) \log \left (2+2 \sqrt [4]{6} x+\sqrt {6} x^2\right )+4 d \log \left (2+3 x^4\right )\right ) \]

input
Integrate[(a + b*x + c*x^2 + d*x^3)/(2 + 3*x^4),x]
 
output
(-2*6^(1/4)*(Sqrt[6]*a + 2*(6^(1/4)*b + c))*ArcTan[1 - 6^(1/4)*x] + 2*6^(1 
/4)*(Sqrt[6]*a - 2*6^(1/4)*b + 2*c)*ArcTan[1 + 6^(1/4)*x] - 6^(1/4)*(Sqrt[ 
6]*a - 2*c)*Log[2 - 2*6^(1/4)*x + Sqrt[6]*x^2] + 6^(1/4)*(Sqrt[6]*a - 2*c) 
*Log[2 + 2*6^(1/4)*x + Sqrt[6]*x^2] + 4*d*Log[2 + 3*x^4])/48
 
3.2.66.3 Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x+c x^2+d x^3}{3 x^4+2} \, dx\)

\(\Big \downarrow \) 2415

\(\displaystyle \int \left (\frac {a+c x^2}{3 x^4+2}+\frac {x \left (b+d x^2\right )}{3 x^4+2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (\sqrt {6} a+2 c\right ) \arctan \left (1-\sqrt [4]{6} x\right )}{4\ 6^{3/4}}+\frac {\left (\sqrt {6} a+2 c\right ) \arctan \left (\sqrt [4]{6} x+1\right )}{4\ 6^{3/4}}-\frac {\left (\sqrt {6} a-2 c\right ) \log \left (3 x^2-6^{3/4} x+\sqrt {6}\right )}{8\ 6^{3/4}}+\frac {\left (\sqrt {6} a-2 c\right ) \log \left (3 x^2+6^{3/4} x+\sqrt {6}\right )}{8\ 6^{3/4}}+\frac {b \arctan \left (\sqrt {\frac {3}{2}} x^2\right )}{2 \sqrt {6}}+\frac {1}{12} d \log \left (3 x^4+2\right )\)

input
Int[(a + b*x + c*x^2 + d*x^3)/(2 + 3*x^4),x]
 
output
(b*ArcTan[Sqrt[3/2]*x^2])/(2*Sqrt[6]) - ((Sqrt[6]*a + 2*c)*ArcTan[1 - 6^(1 
/4)*x])/(4*6^(3/4)) + ((Sqrt[6]*a + 2*c)*ArcTan[1 + 6^(1/4)*x])/(4*6^(3/4) 
) - ((Sqrt[6]*a - 2*c)*Log[Sqrt[6] - 6^(3/4)*x + 3*x^2])/(8*6^(3/4)) + ((S 
qrt[6]*a - 2*c)*Log[Sqrt[6] + 6^(3/4)*x + 3*x^2])/(8*6^(3/4)) + (d*Log[2 + 
 3*x^4])/12
 

3.2.66.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
3.2.66.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.50 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.22

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (3 \textit {\_Z}^{4}+2\right )}{\sum }\frac {\left (\textit {\_R}^{3} d +\textit {\_R}^{2} c +\textit {\_R} b +a \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}\right )}{12}\) \(39\)
default \(\frac {a \sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\frac {\sqrt {3}\, 6^{\frac {1}{4}} x \sqrt {2}}{3}+\frac {\sqrt {6}}{3}}{x^{2}-\frac {\sqrt {3}\, 6^{\frac {1}{4}} x \sqrt {2}}{3}+\frac {\sqrt {6}}{3}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}-1\right )\right )}{48}+\frac {b \arctan \left (\frac {x^{2} \sqrt {6}}{2}\right ) \sqrt {6}}{12}+\frac {c \sqrt {3}\, 6^{\frac {3}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\frac {\sqrt {3}\, 6^{\frac {1}{4}} x \sqrt {2}}{3}+\frac {\sqrt {6}}{3}}{x^{2}+\frac {\sqrt {3}\, 6^{\frac {1}{4}} x \sqrt {2}}{3}+\frac {\sqrt {6}}{3}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}-1\right )\right )}{144}+\frac {d \ln \left (3 x^{4}+2\right )}{12}\) \(214\)
meijerg \(\frac {d \ln \left (\frac {3 x^{4}}{2}+1\right )}{12}+\frac {54^{\frac {3}{4}} c \left (\frac {x^{3} \sqrt {2}\, \ln \left (1-6^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {x^{4}}}{2}\right )}{2 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {x^{3} \sqrt {2}\, \arctan \left (\frac {3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{8-3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {3}{4}}}-\frac {x^{3} \sqrt {2}\, \ln \left (1+6^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {x^{4}}}{2}\right )}{2 \left (x^{4}\right )^{\frac {3}{4}}}+\frac {x^{3} \sqrt {2}\, \arctan \left (\frac {3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{8+3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {3}{4}}}\right )}{216}+\frac {\sqrt {6}\, b \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, x^{2}}{2}\right )}{12}+\frac {24^{\frac {3}{4}} a \left (-\frac {x \sqrt {2}\, \ln \left (1-6^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {x^{4}}}{2}\right )}{2 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \arctan \left (\frac {3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{8-3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \ln \left (1+6^{\frac {1}{4}} \left (x^{4}\right )^{\frac {1}{4}}+\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {x^{4}}}{2}\right )}{2 \left (x^{4}\right )^{\frac {1}{4}}}+\frac {x \sqrt {2}\, \arctan \left (\frac {3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}{8+3^{\frac {1}{4}} 8^{\frac {3}{4}} \left (x^{4}\right )^{\frac {1}{4}}}\right )}{\left (x^{4}\right )^{\frac {1}{4}}}\right )}{96}\) \(363\)

input
int((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x,method=_RETURNVERBOSE)
 
output
1/12*sum((_R^3*d+_R^2*c+_R*b+a)/_R^3*ln(x-_R),_R=RootOf(3*_Z^4+2))
 
3.2.66.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.79 (sec) , antiderivative size = 54479, normalized size of antiderivative = 309.54 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=\text {Too large to display} \]

input
integrate((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x, algorithm="fricas")
 
output
Too large to include
 
3.2.66.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 580 vs. \(2 (156) = 312\).

Time = 4.67 (sec) , antiderivative size = 580, normalized size of antiderivative = 3.30 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=\operatorname {RootSum} {\left (165888 t^{4} - 55296 t^{3} d + t^{2} \cdot \left (6912 a c + 3456 b^{2} + 6912 d^{2}\right ) + t \left (- 864 a^{2} b - 1152 a c d - 576 b^{2} d + 576 b c^{2} - 384 d^{3}\right ) + 27 a^{4} + 72 a^{2} b d + 36 a^{2} c^{2} - 72 a b^{2} c + 48 a c d^{2} + 18 b^{4} + 24 b^{2} d^{2} - 48 b c^{2} d + 12 c^{4} + 8 d^{4}, \left ( t \mapsto t \log {\left (x + \frac {- 41472 t^{3} a^{2} c + 82944 t^{3} a b^{2} + 27648 t^{3} c^{3} + 5184 t^{2} a^{3} b + 10368 t^{2} a^{2} c d - 20736 t^{2} a b^{2} d + 10368 t^{2} a b c^{2} - 6912 t^{2} b^{3} c - 6912 t^{2} c^{3} d + 648 t a^{5} - 864 t a^{3} b d - 1728 t a^{3} c^{2} + 3888 t a^{2} b^{2} c - 864 t a^{2} c d^{2} + 864 t a b^{4} + 1728 t a b^{2} d^{2} - 1728 t a b c^{2} d + 864 t a c^{4} + 1152 t b^{3} c d + 864 t b^{2} c^{3} + 576 t c^{3} d^{2} - 54 a^{5} d + 270 a^{4} b c - 270 a^{3} b^{3} + 36 a^{3} b d^{2} + 144 a^{3} c^{2} d - 324 a^{2} b^{2} c d + 24 a^{2} c d^{3} - 72 a b^{4} d + 180 a b^{3} c^{2} - 48 a b^{2} d^{3} + 72 a b c^{2} d^{2} - 72 a c^{4} d - 72 b^{5} c - 48 b^{3} c d^{2} - 72 b^{2} c^{3} d + 72 b c^{5} - 16 c^{3} d^{3}}{81 a^{6} - 54 a^{4} c^{2} + 432 a^{3} b^{2} c - 216 a^{2} b^{4} - 36 a^{2} c^{4} + 288 a b^{2} c^{3} - 144 b^{4} c^{2} + 24 c^{6}} \right )} \right )\right )} \]

input
integrate((d*x**3+c*x**2+b*x+a)/(3*x**4+2),x)
 
output
RootSum(165888*_t**4 - 55296*_t**3*d + _t**2*(6912*a*c + 3456*b**2 + 6912* 
d**2) + _t*(-864*a**2*b - 1152*a*c*d - 576*b**2*d + 576*b*c**2 - 384*d**3) 
 + 27*a**4 + 72*a**2*b*d + 36*a**2*c**2 - 72*a*b**2*c + 48*a*c*d**2 + 18*b 
**4 + 24*b**2*d**2 - 48*b*c**2*d + 12*c**4 + 8*d**4, Lambda(_t, _t*log(x + 
 (-41472*_t**3*a**2*c + 82944*_t**3*a*b**2 + 27648*_t**3*c**3 + 5184*_t**2 
*a**3*b + 10368*_t**2*a**2*c*d - 20736*_t**2*a*b**2*d + 10368*_t**2*a*b*c* 
*2 - 6912*_t**2*b**3*c - 6912*_t**2*c**3*d + 648*_t*a**5 - 864*_t*a**3*b*d 
 - 1728*_t*a**3*c**2 + 3888*_t*a**2*b**2*c - 864*_t*a**2*c*d**2 + 864*_t*a 
*b**4 + 1728*_t*a*b**2*d**2 - 1728*_t*a*b*c**2*d + 864*_t*a*c**4 + 1152*_t 
*b**3*c*d + 864*_t*b**2*c**3 + 576*_t*c**3*d**2 - 54*a**5*d + 270*a**4*b*c 
 - 270*a**3*b**3 + 36*a**3*b*d**2 + 144*a**3*c**2*d - 324*a**2*b**2*c*d + 
24*a**2*c*d**3 - 72*a*b**4*d + 180*a*b**3*c**2 - 48*a*b**2*d**3 + 72*a*b*c 
**2*d**2 - 72*a*c**4*d - 72*b**5*c - 48*b**3*c*d**2 - 72*b**2*c**3*d + 72* 
b*c**5 - 16*c**3*d**3)/(81*a**6 - 54*a**4*c**2 + 432*a**3*b**2*c - 216*a** 
2*b**4 - 36*a**2*c**4 + 288*a*b**2*c**3 - 144*b**4*c**2 + 24*c**6))))
 
3.2.66.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.18 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=-\frac {1}{144} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} {\left (\sqrt {3} \sqrt {2} c - 2 \cdot 3^{\frac {1}{4}} 2^{\frac {1}{4}} d - 3 \, a\right )} \log \left (\sqrt {3} x^{2} + 3^{\frac {1}{4}} 2^{\frac {3}{4}} x + \sqrt {2}\right ) + \frac {1}{144} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} {\left (\sqrt {3} \sqrt {2} c + 2 \cdot 3^{\frac {1}{4}} 2^{\frac {1}{4}} d - 3 \, a\right )} \log \left (\sqrt {3} x^{2} - 3^{\frac {1}{4}} 2^{\frac {3}{4}} x + \sqrt {2}\right ) + \frac {1}{72} \, \sqrt {3} {\left (3 \cdot 3^{\frac {1}{4}} 2^{\frac {3}{4}} a + 2 \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} c - 6 \, \sqrt {2} b\right )} \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} {\left (2 \, \sqrt {3} x + 3^{\frac {1}{4}} 2^{\frac {3}{4}}\right )}\right ) + \frac {1}{72} \, \sqrt {3} {\left (3 \cdot 3^{\frac {1}{4}} 2^{\frac {3}{4}} a + 2 \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} c + 6 \, \sqrt {2} b\right )} \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} {\left (2 \, \sqrt {3} x - 3^{\frac {1}{4}} 2^{\frac {3}{4}}\right )}\right ) \]

input
integrate((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x, algorithm="maxima")
 
output
-1/144*3^(3/4)*2^(3/4)*(sqrt(3)*sqrt(2)*c - 2*3^(1/4)*2^(1/4)*d - 3*a)*log 
(sqrt(3)*x^2 + 3^(1/4)*2^(3/4)*x + sqrt(2)) + 1/144*3^(3/4)*2^(3/4)*(sqrt( 
3)*sqrt(2)*c + 2*3^(1/4)*2^(1/4)*d - 3*a)*log(sqrt(3)*x^2 - 3^(1/4)*2^(3/4 
)*x + sqrt(2)) + 1/72*sqrt(3)*(3*3^(1/4)*2^(3/4)*a + 2*3^(3/4)*2^(1/4)*c - 
 6*sqrt(2)*b)*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x + 3^(1/4)*2^(3/4))) 
+ 1/72*sqrt(3)*(3*3^(1/4)*2^(3/4)*a + 2*3^(3/4)*2^(1/4)*c + 6*sqrt(2)*b)*a 
rctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x - 3^(1/4)*2^(3/4)))
 
3.2.66.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.85 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=\frac {1}{24} \, {\left (6^{\frac {3}{4}} a - 2 \, \sqrt {6} b + 2 \cdot 6^{\frac {1}{4}} c\right )} \arctan \left (\frac {3}{4} \, \sqrt {2} \left (\frac {2}{3}\right )^{\frac {3}{4}} {\left (2 \, x + \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}}\right )}\right ) + \frac {1}{24} \, {\left (6^{\frac {3}{4}} a + 2 \, \sqrt {6} b + 2 \cdot 6^{\frac {1}{4}} c\right )} \arctan \left (\frac {3}{4} \, \sqrt {2} \left (\frac {2}{3}\right )^{\frac {3}{4}} {\left (2 \, x - \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}}\right )}\right ) + \frac {1}{48} \, {\left (6^{\frac {3}{4}} a - 2 \cdot 6^{\frac {1}{4}} c + 4 \, d\right )} \log \left (x^{2} + \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}} x + \sqrt {\frac {2}{3}}\right ) - \frac {1}{48} \, {\left (6^{\frac {3}{4}} a - 2 \cdot 6^{\frac {1}{4}} c - 4 \, d\right )} \log \left (x^{2} - \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}} x + \sqrt {\frac {2}{3}}\right ) \]

input
integrate((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x, algorithm="giac")
 
output
1/24*(6^(3/4)*a - 2*sqrt(6)*b + 2*6^(1/4)*c)*arctan(3/4*sqrt(2)*(2/3)^(3/4 
)*(2*x + sqrt(2)*(2/3)^(1/4))) + 1/24*(6^(3/4)*a + 2*sqrt(6)*b + 2*6^(1/4) 
*c)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x - sqrt(2)*(2/3)^(1/4))) + 1/48*(6^ 
(3/4)*a - 2*6^(1/4)*c + 4*d)*log(x^2 + sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3)) 
- 1/48*(6^(3/4)*a - 2*6^(1/4)*c - 4*d)*log(x^2 - sqrt(2)*(2/3)^(1/4)*x + s 
qrt(2/3))
 
3.2.66.9 Mupad [B] (verification not implemented)

Time = 10.15 (sec) , antiderivative size = 1168, normalized size of antiderivative = 6.64 \[ \int \frac {a+b x+c x^2+d x^3}{2+3 x^4} \, dx=\text {Too large to display} \]

input
int((a + b*x + c*x^2 + d*x^3)/(3*x^4 + 2),x)
 
output
symsum(log(9*a*b^2 - 864*root(z^4 - (d*z^3)/3 + (a*c*z^2)/24 + (d^2*z^2)/2 
4 + (b^2*z^2)/48 - (a*c*d*z)/144 - (b^2*d*z)/288 + (b*c^2*z)/288 - (a^2*b* 
z)/192 - (d^3*z)/432 - (b*c^2*d)/3456 + (a*c*d^2)/3456 + (a^2*b*d)/2304 - 
(a*b^2*c)/2304 + (b^2*d^2)/6912 + (a^2*c^2)/4608 + d^4/20736 + c^4/13824 + 
 b^4/9216 + a^4/6144, z, k)^2*a - 9*a^2*c - 6*a*d^2 + 9*b^3*x - 6*c^3 + 14 
4*root(z^4 - (d*z^3)/3 + (a*c*z^2)/24 + (d^2*z^2)/24 + (b^2*z^2)/48 - (a*c 
*d*z)/144 - (b^2*d*z)/288 + (b*c^2*z)/288 - (a^2*b*z)/192 - (d^3*z)/432 - 
(b*c^2*d)/3456 + (a*c*d^2)/3456 + (a^2*b*d)/2304 - (a*b^2*c)/2304 + (b^2*d 
^2)/6912 + (a^2*c^2)/4608 + d^4/20736 + c^4/13824 + b^4/9216 + a^4/6144, z 
, k)*a*d - 144*root(z^4 - (d*z^3)/3 + (a*c*z^2)/24 + (d^2*z^2)/24 + (b^2*z 
^2)/48 - (a*c*d*z)/144 - (b^2*d*z)/288 + (b*c^2*z)/288 - (a^2*b*z)/192 - ( 
d^3*z)/432 - (b*c^2*d)/3456 + (a*c*d^2)/3456 + (a^2*b*d)/2304 - (a*b^2*c)/ 
2304 + (b^2*d^2)/6912 + (a^2*c^2)/4608 + d^4/20736 + c^4/13824 + b^4/9216 
+ a^4/6144, z, k)*b*c + 12*b*c*d - 108*root(z^4 - (d*z^3)/3 + (a*c*z^2)/24 
 + (d^2*z^2)/24 + (b^2*z^2)/48 - (a*c*d*z)/144 - (b^2*d*z)/288 + (b*c^2*z) 
/288 - (a^2*b*z)/192 - (d^3*z)/432 - (b*c^2*d)/3456 + (a*c*d^2)/3456 + (a^ 
2*b*d)/2304 - (a*b^2*c)/2304 + (b^2*d^2)/6912 + (a^2*c^2)/4608 + d^4/20736 
 + c^4/13824 + b^4/9216 + a^4/6144, z, k)*a^2*x + 864*root(z^4 - (d*z^3)/3 
 + (a*c*z^2)/24 + (d^2*z^2)/24 + (b^2*z^2)/48 - (a*c*d*z)/144 - (b^2*d*z)/ 
288 + (b*c^2*z)/288 - (a^2*b*z)/192 - (d^3*z)/432 - (b*c^2*d)/3456 + (a...